Bruno Voisin

2007/12/06

Simple FLC Walk-through
Object Description (V2)
1Simple FLC Walk-through Object Description

2Background

2Top object: the FLC

2Fuzzy Set (FS)

3Variable Set (VS)

3Rule Set (RS)

3Life and scope of the FLC object

3Defining the FLC

3Defining a Fuzzy Set

4Defining Fuzzy States

5Calculating DOM (Degree of Membership)

6Defining a Variable Set (VS)

7Defining a Rule Set (RS)

8Loading the default Rule Set

9Deleting FLC components

9Modifying FLC Components

10Implementation details

10FLC Calculations

10Procedure details

12Calculating the Output Strength

13Conclusion

14Appendix 1

14Appendix 2

Introduction

This document is not an “API” description for the various calls. It is not necessary since this FL model is fairly simple, and calls will have to follow a recommended process method. The following model description will therefore be a series of steps to produce a working FLC, introducing objects and classes as we go along.

I believe this model is the simplest possible object oriented FL model. It may some quirks and design flaws, but should serve our purpose for a compact FLC core in a more complex FuSM design.
Background
This document is specific to this “Simple FLC” set of classes. It assumes some basic knowledge of the jargon commonly used in Fuzzy Logic. There are a number of C++ code snippets which should be easy to read for any programmer. For more information on FL, the following resources are available on the Internet:

1. “Fuzzy Control,” Kevin M. Passino and Stephen Yurkovich, Addison Wesley Longman, Menlo Park, CA, 1998 (later published by Prentice-Hall). http://eewww.eng.ohio-state.edu/~passino/FCbook.pdf
2. “Fuzzy Logic: a Practical Approach,” McNeill, Martin and Ellen Thro., 1994 Academic Press Professional. http://www.fuzzysys.com/books/FLLib/FUZZYPDF/FUZZYLOG.PDF

3. Seattle Robotics “practical” tutorial on FL:
http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html
Top object: the FLC

FLC, as its name implies, is a Fuzzy Logic Controller. In order to work, the FLC will need to be created, and have its 3 components defined: FS, VS and RS. For simplicity and compactness, the FLC uses dynamic arrays in the form of pointers. The array sizes are also defined.

CFuzzySet* FS;

// Fuzzy Sets

CFLVariable* FLV;

// Variable Set

CFLRule* FLRS;

// Rule Set

int m_nNumFS;

// Number of Fuzzy Sets

int m_nNumVars;

// Number of Variables

int m_nNumRules;

// Number of Rules

Fuzzy Set (FS)

A fuzzy set represents a set of fuzzy states, like for instance “High, Medium, and Low”. A FLC can hold many different fuzzy sets for different variables in different situations. The Variable XO4 can be attached to a FS in one TF, but attached to another FS in another TF.
Variable Set (VS)

A variable set represents a collection of variables to be used in the FLC. In many cases, the FLC will only have 2 inputs and 1 output, but the model can handle more inputs (MISO). There are rare implementations of complex controllers with multiple outputs, but it should hopefully not be necessary for a FuSM.

Rule Set (RS)
A rule set represents the collection of rules in the FLC. A rule follows the same format as in crisp logic, i.e. IF Premise THEN Consequent, with Premise being made of logical assertions associated by Boolean operators. In this implementation, each component (Antecedent) is called a Premise, and the Consequent can only be attached to the Output variable. This makes our rules look like:

IF Var_1 IS High AND Var_2 IS Low THEN Output IS Average
The 1st premise (Var_1 IS High) obviously requires a Variable and an associated Fuzzy Set. This is why the FLC will have to be defined in a specific order: FS -> VS -> RS. To be exact, the RS actually requires the VS and the FS attached (i.e. contained) to each Variable. The FLC could run after the “standalone” FS have been deleted.
Life and scope of the FLC object

When a FLC object is instantiated, it is “empty”. It has no FS, no VS, no RS.

In this client application (dialog based), the object is created on the heap, along with the dialog:

FLC = new CFLC;
// instantiate a new FL 'empty' controller

FLC->SetName("Test_FLC");

The FLC object is destroyed in the dialog destructor:

delete FLC;

Defining the FLC

As described briefly above, the main FLC components need to be defined for the FLC to be operational. The dialog based implementation not only creates them but also defines them as per the Seattle Robotics tutorial.
Defining a Fuzzy Set

The FS is created and defined by pressing the “Load FS” button.

The 1st step consists of initialising a number of Fuzzy Sets. This call will be useful in the Genetic Algorithm version of the FLC.

FLC->InitFuzzySets(3);

This function InitFuzzySet(int) returns a value:

-3
if the number of fuzzy sets to be created is negative

-2
if fuzzy sets could not be created (memory allocation error)

-1
if fuzzy sets have already been created for this fuzzy set

0
OK

if OK, one can then use a pointer to the Fuzzy Set array. Boundaries are not checked in the above code, but it is obvious that one should not attempt to address more than 3 Fuzzy Sets here.

CFuzzySet* pFSet = FLC->FSArray();

Each Fuzzy Set is then initialised below with 3 Fuzzy States (“Neg.”, “Null”, “Pos.”)

pFSet[0].InitFuzzySet(3);

pFSet[1].InitFuzzySet(3);

pFSet[2].InitFuzzySet(3);

In practice, the number of fuzzy states is often 3, 5 or 7.

Each FS now holds an array of Fuzzy States, still undefined.
Note1: InitFuzzySet(int) returns a value (same convention):

-3
if the number of states to be created is negative

-2
if fuzzy states could not be created (memory allocation error)

-1
if fuzzy states have already been created for this fuzzy set

0
OK
Note: In the current version, Fuzzy Sets are each given a unique number.
Defining Fuzzy States
Fuzzy states are nothing but a way to quantify the attributes that will be applied to a variable, in other words, how high is “high” for instance.

In order to do this, our set of classes uses a definition of the simplest possible shapes that we are going to use. More shapes can be devised using the same model.
class _MFshape

//
ShoulderRight (0) -\, Triangle (1) /-\, ShoulderLeft (2) /-

int

nType;

//
The points do characterize the shape of the membership function

//
This set-up can also accommodate other shapes like Gaussian

//
More points can be added to identify more shapes

//
like trapezoids

//
dCenter is used for shoulder shapes

double dPoint1;

double dPoint2;

double dPoint3;

double dPoint4;

double dCenter;
In current implementations, only 3 shapes are used: 0, 1 and 2. These shapes only need dPoint1, dPoint2, and dCenter. dPoint3 and dPoint4 are left for future use (possible other shapes).
Calculating DOM (Degree of Membership)
It is very easy to calculate DOM (Degree of Membership) for a variable of value x in a particular Fuzzy State, using the following functions:

double ShoulderLeft(double x, double t1, double t2)

{

if (t1==t2) return 0.0;

if (x<=t1)
return 0.0;

if (x>=t2)
return 1.0;

return ((x-t1)/(t2-t1));

}

double ShoulderRight(double x, double t1, double t2)

{

if (t1==t2) return 0.0;

if (x<=t1)
return 1.0;

if (x>=t2)
return 0.0;

return ((x-t2)/(t1-t2));

}

double Triangle(double x, double t1, double t2)

{

if (x<=t1)
return 0.0;

if (x>=t2)
return 0.0;

if (x<=(t1+t2)/2)
return ShoulderLeft(x,t1,(t1+t2)/2);

else

return ShoulderRight(x,(t1+t2)/2,t2);

}

double Triangle(double x, double t1, double t2, double center)

{

if (x<=t1)
return 0.0;

if (x>=t2)
return 0.0;

if (x<=center)
return ShoulderLeft(x,t1,center);

else

return ShoulderRight(x,center,t2);

}
These functions do not require the value x to be normalised, but it is a recommended convention nonetheless. Please note that the centre used in the Triangle functions is the actual x-coordinate for the triangle peak (DOM = 1).
Example:

pFSet is the same pointer to the Fuzzy Set array as described above.

First, we create an empty shape.

_MFshape s;

s.Reset();

We can then retrieve a pointer to the Fuzzy State array.

CFLMembershipFunction *MF0 = pFSet[0].FuzzyStateArray();

The implementation code is a tutorial on how to use the FLC classes. One should of course check the boundaries of that array. MF0 can only contain 3 elements, for the 3 possible states, as defined.

// Set 1st Fuzzy Set

s.nType = 0; // ShoulderRight -\
"Neg" Center set to -1 (min)

s.dPoint1 = -1.0/2.0;

s.dPoint2 = 0.0;

s.dCenter = -1.0;

s.strName = "FS1-Neg";

MF0[0].SetMFshape(s);

s.nType = 1; // Triangle /\ "Null" Center = triangle center = 0

s.dPoint1 = -1.0/2.0;

s.dPoint2 = 1.0/2.0;

s.dCenter = 0.0;

s.strName = "FS1-Null";

MF0[1].SetMFshape(s);

s.nType = 2; // ShoulderLeft /- "Positive" Center set to +1 (max)

s.dPoint1 = 0.0;

s.dPoint2 = 1.0/2.0;

s.dCenter = 1.0;

s.strName = "FS1-Pos";

MF0[2].SetMFshape(s);
Again, such simple shape description will easily allow for optimisations wit Genetic Algorithms. You will however notice that shouldered shapes do need to have their “dCenter” at the boundary of the range i.e. -1 or +1. This is required in order to be able to get crisp values out of the FLC when needed.
Defining a Variable Set (VS)
The Variable Set is the 2nd main component of the FLC.

Of course, it is essential to first check whether a FS has been defined, and if a VS has not already been defined:

if (FLC->boolVS()) return;

if (!FLC->boolFS()) return;

Like for Fuzzy Sets, a number of variables, here 3, are created in one call:

FLC->InitVarSet(3);
InitVarSet() returns a value:

-3
if the number of variables to be created is negative

-2
if fuzzy variables could not be created (memory allocation error)

-1
if fuzzy variables have already been created for this FLC

0
OK

If OK, we can then retrieve a pointer to the Variables array, and a pointer to the Fuzzy Sets array:

CFLVariable* pVars = FLC->VarArray();

CFuzzySet* pFSet = FLC->FSArray();
pVars will now be used to initialise the different variables, with an individual Fuzzy Set:

pVars[0].LoadFuzzySet(pFSet[0],TRUE); // Input1 in the FLC

pVars[1].LoadFuzzySet(pFSet[1],TRUE); // Input2

pVars[2].LoadFuzzySet(pFSet[2],FALSE);// Output

LoadFuzzySet() does more than copying a Fuzzy Set into the Variable description. It also attributes a premise number to each (Variable <-> Fuzzy State). It will be described in more details later in this document.
Defining a Rule Set (RS)

The Rule Set is the 3rd and last important component in the FLC. The format should now be a little bit familiar. First, one must check a Variable Set is available, and that a Rule Set has not already been created.

if (!FLC->boolVS()) return;

if (FLC->boolRS()) return;

The entire Rule Set is created in one call:

int NumRules = 9;
// 3 x 3 rule matrix (eq. to Fuzzy Sets)

FLC->InitRuleSet(NumRules);

InitRuleSet() returns a value:

-3
if the number of rules to be created is negative

-2
if rules could not be created (memory allocation error)

-1
if rules have already been created for this FLC

0
OK

If OK, one can retrieve a pointer to the Rule Set:

CFLRule * pFLR = FLC->RuleArray();
If the number of rules in the Rule Set is needed, an accessor member function is available, like for all private members of all FLC classes:

NumRules = FLC->GetRuleSetSize();

Each rule has to be formatted. In our example, all rules are made of 2 premises like seen above:
IF Var_1 IS High AND Var_2 IS Low THEN Output IS Average
Please note that the current rule model is specifically MISO (Multi Input Single Output), i.e. a rule only has one consequent. Allowing for MIMO rules should not be a problem to expand, but this has not been done yet.

In the current implementation, all rules therefore conform the same format, but this is not necessary:

for (int i=0; i<NumRules; i++) pFLR[i].Allocate(2);

Each rule is here composed of 2 premises.

At this stage, the rule set is fully constructed. One just needs now to build rules by associating premise numbers. This is the reason why the Variable Set has to be fully defined first.
Loading the default Rule Set

The dialog implementation includes a function: LoadFLRuleSet(CFLRule *rs, int NumRules)
Rules are defined using the following format:

ret = rs[0].SetPremise(0,1);// 1st variable (0) is "Negative" (1)

if (ret!=0) return -1;

ret = rs[0].SetBoolOp(0,AND);
// AND

if (ret!=0) return -1;

ret = rs[0].SetPremise(1,4);
// 2nd variable is "Negative"

if (ret!=0) return -1;

ret = rs[0].SetBoolOp(1,NOTHING);

if (ret!=0) return -1;

rs[i].SetConsequent(7);

// Output is "Negative"

*rs being the Rule Set array, rs[0] is the first rule being defined above. The function SetPremise defines each premise in each rule. Here, the 1st premise (premise 0) is Premise No1, and the 2nd premise (premise 1) is Premise No4. The Boolean operator is an AND. The fuzzy AND operator is a Min using the common Min-Max convention.
The above rule is equivalent to:

IF Premise1 AND Premise4 THEN “Premise7”
Technically a consequent is not a premise, but this is a design shortcut taken to keep the overall FL model compact. In the FL literature, Premise1 and Premise4 are antecedents.
In the dialog application, the default implementation is:

Premise1 is:
Var_0 IS Negative

Premise4 is:
Var_1 IS Negative

And the consequent (“Premise7”) is:
Output IS Negative

This function LoadFLRuleSet is not part of the FLC class. Loading a Rule Set is application dependent and is here part of the dialog class.
Deleting FLC components

FS, VS and RS can be deleted at all times. The FS is not even needed once the variables have a fuzzy set loaded.

Deleting a FS requires a single call to:

FLC->ClearFuzzySets();

The same logic applies to VS, but deleting a VS must be followed by deletion of the RS:

FLC->ClearVarSet();

FLC->ClearRuleSet();
The Rule Set can be deleted separately.
Modifying FLC Components

The dialog implementation relies on passing pointers to child dialogs where the appropriate object is modified. For instance, in the case of modifying Fuzzy Sets:

if (!FLC->boolFS())return;

CFuzzySet *FS = FLC->FSArray();

static CFuzzySetDesign s_FSdlg;

s_FSdlg.nNumFS = FLC->GetNumFuzzySets();

s_FSdlg.FS = FS;

s_FSdlg.DoModal();

The same logic is used for VS and RS. There is a small variation however with VS. Building a RS should be prevented if the FS is removed from a variable it was attached to. This can be done for instance as follows:

for (int i=0; i<FLC->GetNumVars(); i++)

if (!VS[i].HasFS())

{

FLC->ClearVarSet();

return;

}

ClearVarSet() will reset the boolVS flag which is used when a RS is created.
Note: the dialog implementation does not allow changing the number of fuzzy states. It is possible to manually drop the FS attached to the variable, and attach another FS with more (or less fuzzy states). In practice, assuming GA optimisation techniques, the FLC individual and/or the FLC component (VS) would be killed (depending on the level or levels the GA is applied) and regenerated.
Implementation details

The UI could admittedly be more comprehensive, but the current implementation only serves as a container for the FLC classes. This hierarchical model can easily be stored in a database. Save/restore functionalities have not been enabled here for better code readability.

Each FLC is uniquely identified by a number, which can be a database index. It is easy to visualise database relationships between FLC and its components FS, VS, and RS. One must however note that at a higher level (FuSM) the same Variables may have to be used in several locations. In other instances, Variables may have different Fuzzy Sets, hence only be semantically equivalent. This will be detailed in a separate document.

FLC Calculations

The current implementation, once all 3 components are defined in the FLC, consists in a single procedure:

double FuzzyController(double Value1, double Value2)
It takes the two numerical inputs as arguments, and simply returns the fuzzy output. In the final application, templates or polymorphic functions may be needed. In most cases, the FLC will use either 2 or 3 inputs for a single output.
Procedure details

Again, one has to verify that components are loaded.

if (!FLC->boolFS())
return 0.00;

if (!FLC->boolVS())
return 0.00;

In this case, the fuzzy output is set to 0 if the FLC setup is not complete. It may not be appropriate in some cases. Other conventions are possible. For instance, as the fuzzy output ranges from -1 to +1, the error return value could be -2.
At this stage, all premises can be calculated, even if the Rule Set is not yet available.

CFLVariable * pVars = FLC->VarArray();

pVars[0].CalcPremises(Value1);

pVars[1].CalcPremises(Value2);

Each DOM for each Fuzzy State is now calculated for both inputs.
A Rule Set is now needed to evaluate all predicates. This simple FLC model actually makes these calculations relatively straightforward.

We have seen that all premises are numbered, that all DOMs are calculated, and that the Rule Set is formatted in such a way that rule premises are indexed with premise numbers.
As seen earlier, Rules are interpreted as follows:

IF Premise1 AND Premise4 THEN “Premise7”
Now, that DOM is known for both input premises, one just has to apply a Fuzzy Boolean AND to them. This is done in the following code snippet:
double *PredicateValue = new double[NumRules]; // 9 rules
int
*Consequent = new int[NumRules];

int np = FLC->RuleArray()->NumPremises();
// 2 input premises
int nv = FLC->GetNumVars();

double *RuleEstimate = new double[np];

for (int i=0 ; i<NumRules ; i++)

{

for (int n=0 ; n<np ; n++)

{

int *pP = pFLR[i].pPremise();

RuleEstimate[n] = 0.0;

for (int v=0 ; v<nv ; v++)

{

CFLMembershipFunction * pMF =

pVars[v].FuzzySet()->FuzzyStateArray();

if (pVars[v].IsInput())

for (int k=0 ; k<pVars[v].NumStates() ; k++)

if (pP[n] == pMF[k].PremiseNumber())

RuleEstimate[n] = pMF[k].GetDOM();

}

}

In this 1st part of the code, rules are scanned one by one. For each rule, we scan variables (inputs only) to retrieve the DOM using the premise number. The RuleEstimate array stores each and every DOM on which we can now apply the fuzzy Boolean indicator.
double value = 0.0;

for (int p=0 ; p<np ; p++)

{

int o = pFLR[i].Operation(p);

switch (o)

{

case AND:

value += And(RuleEstimate[p],RuleEstimate[p+1]);

break;

case OR:

value += Or(RuleEstimate[p],RuleEstimate[p+1]);

break;

case NOT:

value += Not(RuleEstimate[p]);

break;

case NOTHING:

// Do nothing

// End predicate evaluation

default:

;

}

}

PredicateValue[i] = value;

Consequent[i] = pFLR[i].RuleConsequent();
// will be used for defuzz

}

delete [] RuleEstimate;
// no longer needed

RuleEstimate = NULL;
The rule predicates are now all known.

Please note that this design allows for more than 2 inputs, but this type of coding implies than premises are logically assessed sequentially.

Calculating the Output Strength

It is now possible to calculate the output strength by scanning the Rule Set and analysing which rules contribute to each fuzzy state. At the same time, we “defuzzify” the Output.
The method here used is the Fuzzy Centroid (also called Root-Sum-Squares), which is one of the most balanced method. For more information, please check the Background Reading section at the beginning of this document.

int OutVarNo = FLC->GetNumVars() -1;
// = 2

int NumOutputStates = pVars[OutVarNo].FuzzySet()->NumStates();

// After inferencing:

// OutputStrength stores the "strength" in each output fuzzy state.

double *OutputStrength = new double[NumOutputStates];

for (int i=0;i<NumOutputStates;i++) OutputStrength[i] = 0.0;

// pVars[2] is the output in this example

// Premises have been numbered incrementally

int FirstOutputState =

pVars[OutVarNo].FuzzySet()->

FuzzyStateElt(0).PremiseNumber();

int LastOutputState =

pVars[OutVarNo].FuzzySet()->

FuzzyStateElt(NumOutputStates-1).PremiseNumber();

double denom_out = 0.0;

for (int i=FirstOutputState;i<=LastOutputState;i++)

{
// Scanning through rule set to evaluate OutputStrength

//for each output fuzzy state

double sumsq = 0.0;

for (int j=0;j<NumRules;j++)

if (Consequent[j] == i)
// Sum squares

sumsq += PredicateValue[j] * PredicateValue[j];

int k = i-FirstOutputState;

OutputStrength[k] = sqrt(sumsq);

denom_out += OutputStrength[k];
// root-sum-squares

}

In the above code snippet, one first retrieves the variable index for the output variable (2), then we just have to scan rules again to extract how each contributes to a particular fuzzy state for the Output variable.
At the same time, we prepare for the Fuzzy Centroid calculation by computing the Root-Sum-Squares.

Now, we only have to calculate the crisp value for the output:
// Calculate the Fuzzy Centroid of the area (cf tutorial for details)

double num_out = 0.0;

for (int i=0;i<NumOutputStates;i++)

{

double dCenter;

dCenter = pVars[2].FuzzySet()->FuzzyStateElt(i).GetShapeCenter();

num_out += dCenter * OutputStrength[i];

}

if (denom_out == 0.0)
OutputValue = 0.0;

else

OutputValue = num_out / denom_out;

This is where the dCenter comes into play for each Output state. This guarantees that a FLC can also compute crisp logic.

The rest of the code is the usual garbage collection…

Conclusion

This simple FLC model is more versatile than it may look at first. Obviously, the design shortcuts require object indexing to be closely controlled. For instance, if premises numbers do not follow a precise sequence as:

Variable 0: Premise 1 to Num. Fuzzy States

Variable 1: Premise Num. Fuzzy States + 1 to (2 * Num Fuzzy States)
Etc…

Then, the inferencing and defuzzifying code snippets above will have to be rewritten accordingly. That should not be needed in any case.

I hope this document is clear enough for any C++ programmer to develop his or her own Simple FLCs based on these classes. The next step is the FuSM derived classes which will be described in a separate document.
Appendix 1

Fuzzy Boolean Operators

//
Fuzzy operators

double Or(double x, double y)

{
if (x>y) return x; else return y;
}
// MAX

double And(double x, double y)

{
if (x>y) return y; else return x;
}
// MIN

double Not(double x)

{
return (1-x);
}

They can also be written as macros using the #define statement.

Appendix 2

One of the most important procedures in the loading of a FS into a Variable.
int CFLVariable::LoadFuzzySet(CFuzzySet &fs, BOOL bIsInput)

{

if (FS != NULL) return -1;

m_nNumStates = fs.NumStates();

m_bIsInput = bIsInput;

FS = new CFuzzySet(m_nNumStates);

if (FS == 0) return -2;

FS->SetFSname(fs.GetFSName());
// copy FS name

CFLMembershipFunction * pMFo = fs.FuzzyStateArray();

CFLMembershipFunction * pMFd = FS->FuzzyStateArray();

// Fuzzy Sets are made of MFs, which do not have a Premise number

// defined until they are associated to a variable

// which is going to be done now

for (int i=0;i<m_nNumStates;i++)

{
// premises are numbered sequentially in order to suit

// the original rule set

pMFd[i].SetPremiseNumber(m_nNumStates * (m_nVarNumber-1) + i+1);

pMFd[i].ResetDOM();

_MFshape s = pMFo[i].MFshape();

pMFd[i].SetMFshape(s);

}

m_bHasFS = TRUE;

return 0;

}

The important aspect to keep in mind here is that variable will keep their premise numbering determined by Variable Number and the number of Fuzzy States.

It is not a requirement per se, but if new premise numbers are created the Rule Set would also have to be always regenerated since reference to previous premise number would be obsolete.

Simple FLC Class Implementation Details

Page 1 of 14

