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Abstract

There still seems to be a misapprehension that neural networks are capable of
dealing with large amounts of noise and useless data. This is true to a certain extent
but it is also true that the cleaner and more descriptive the data is the better the
neural networks will perform, especially when dealing with small data sets. A method
for determining how useful input features are in giving correct classifications using
neural networks is discussed here.

1 Introduction

There still seems to be a degree of unrealistic optimism regarding the abilities of neural
networks. To push them to the limits of their capabilities we need to recognise that the
cleaner our data sets and using only the significant features in training and classification
will give us the best possible results.

Many data sets contain large amounts of noise. It is tempting to throw as many features at
the neural network as possible in the hope that it will be able to work out what is significant
and give a classification. As we do not have a good understanding of how neural networks
work it is difficult to know which of the features available are the most useful in describing
the key properties of the input vectors class, this will also depend on the domain the data
comes from.

It is possible that using the same method for feature selection and classification produces
better results [1]. A neural network may use a different set of features to a machine learning



algorithm so to use some other feature selection method may remove data that is useful
and keep data that is not. So we use the neural network to help us decide which are the
most useful features in giving a classification.

By giving a measure of the contribution each input feature makes to the final output of
the network we can select the features to use. This will reduce the noise and extraneous
information that the network has to deal with as well as reducing training and classification
times.

2 Calculating Proportion Contribution of Input Fea-
tures to Outputs

The networks used here consist of 3 layers, an input layer, a single hidden layer and an
output layer. Assuming the following values

ninputs  the number of inputs
nhidden  the number of hidden units
noutputs the number of outputs

the input units are numbered from 1 to ninputs, the hidden nunits are numbered from nin-
puts+1 to ninputs+nhidden and the output units are numbered from ninputs+nhidden+1
to ninputs+nhidden-+noutputs. The weight between unit 7 in layer n and unit j in layer
n+1is given by wj;.

Garson [2] proposed the following measure of proportion contribution. The contribution
that input unit 2 makes to output unit o is
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This method will not give a true proportion when there is a combination of positive and
negative weights.

Another measure of contribution, used in [3], gives the proportion contribution of a unit
in one layer to a unit in the next layer. For example, the contribution of input unit ¢ to

the hidden unit A would be
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A possible disadvantage of this is that the sign of the contribution is lost.

A better measure of the proportion contribution of input ¢ to output o would be
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as it takes into account the fact that weights can be positive or negative, and gives a true
proportion.

To use this measure for feature selection, inputs that have a contribution close to zero can
be left out of the training. A large negative value tends to decrease the size of the output
while a large positive value tends to increase the size of the output. It is possible that the
features that make positive contributions give the overall characteristics for a particular
class while the negative values adjust for special cases.

3 The Data

This work is part of a project investigating neural networks to generate maps of species
occurrence in eucalypt forests. The area being studied is the Nullica State Forest on the
south coast of New South Wales, Australia. The data consists of 190 training vectors and
70 test vectors that have been generated from surveys of the area. It is important to note
that it is difficult to generate more training data as it would require further surveys of the
area. The area is approximately 20kmx10km of fairly rugged country so to generate large
amounts of training data would be prohibitively expensive in time and money. As we have
only a small data set it is even more crucial that we have the cleanest training set possible.
Other methods are also being investigated to give the best possible classifications.

The the features available in the data are aspect, altitude, slope, topographic position,
geology type, rainfall, temperature, and Landsat TM bands 1 to 7. These values are scaled
to range between 0 and 1. The aspect is represented as a vector to reflect the circular
nature of this feature.

It is known that some of the features are noisy. For example, the geology map of the
area is estimated as only about 40% correct. Features such as rainfall and temperature
are derived from data from a small number of weather stations close to the field area and
models of weather patterns. Thus, it may be desirable to remove some of the features from
the training.



Initially the aim is to produce a set of general classifications which will be used later in
the actual species classifications. The possible classes are scrub (SC), dry sclerophyll forest
(DS), wet/dry sclerophyll forest (WD), wet sclerophyll forest (WS) and rainforest (RF).

4 The Neural Network

The networks used consist of a 17 unit input layer, 14 unit hidden layer and a one unit
output layer trained using back-propagation. Each network is trained to recognise a single
class. Each input vector is given a class of 0.9 if it is in the given class and a class of 0.1
if it is not. To determine class membership of the output of the trained neural network a
threshold is chosen so that the number of correct classifications is maximised [4]. To avoid
over-fitting the data, cross validation is used to determine when to stop training.

The area being studied is predominantly dry sclerophyll forest. Of the 190 training vectors
99 are in the DS class and 46 of the test vectors are in the DS class. For this reason the
data has been split into DS and not DS classes with alternative neural network methods
being considered to produce the other classifications.

5 Contribution Calculation and Feature Selection

Five networks, with different initial weights, were trained for the DS class. The graph in
figure 1 shows the contribution of each input for the trained networks.

As can be seen each feature shows a similar level of contribution to the output for each
of the networks. This shows that, in general, the initial weights have no effect on the
contribution of a feature for a single output/2 class network. The candidates for removal
from training and classification could be slope and tm7 as their contribution to the output
is close to zero.

A “large” variation in the contributions for a particular feature over different networks may
also indicate that the given feature is not important in the classification. For example, a
feature with a large variation in the contribution is tm2. This is possibly a better candidate
for removal than say altitude as its contribution is close to zero.

It is also possible that only the features with a large positive or negative contribution are
useful. So the most significant features may only be tp, alt, tm3 and tmé.

6 Removal of Features

A further four training runs were carried out. Firstly slope and ¢m7 were removed, then
tm2 alone was removed, and then all three features were removed, from both the training
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Figure 1: contributions of the input features for 5 networks trained to recognise dry scle-
rophyll forest

and the test sets. The final training run used only the tp, alt, tm3 and tm6 features, all of
the other features were removed from the training and test sets. The average number of
correct classifications for each of the five training runs are given in table 1.

7 Discussion and Conclusions

As can be seen the number of overall correct classifications does increase. Although the
results for the not DS class in the test set are still reasonable the drop in the number
of correct classifications will need to be investigated further. The numbers of correct
classifications given by the individual networks can also be fine tuned by adjusting the
class membership threshold.

Even with removing all but four of the features we can still get an improvement in the
results. We get at least as good performance as using all the data, but not as good as
removing only three of the features. This seems to indicate that the other features while
not completely superfluous are very noisy or contain only small amounts of information,
possibly even both. So, as expected, as we remove too many features the accuracy drops.

The variation of the contribution for different networks is also useful in determining the
useful features for correct classifications, as can be seen with the significant improvement



all data slope, tm7 | tm2 slope, tp, alt,

removed removed tm2, tm7 | tm3, tm6
removed only
av DS correct 52% 64% 66% 65% 63%
av not DS correct | 83% 7% 79% 76% 83%
av correct 66% 70% 2% 70% 72%

(a) training set classification

all data slope, tm7 | tm2 slope, tp, alt,

removed removed tm2, tm?7 | tm3, tm6
removed only
av DS correct 43% 66% 63% 64% 54%
av not DS correct | 86% 1% 70% 73% 67%
av correct 58% 55% 65% 67% 58%

(b) test set classifications

Table 1: average number of correct classifications

when removing the tm2 data.

Removing features with contribution close to zero and those with high variation in con-
tribution still produces good results. i.e. the removal of slope, tm2 and tm7. It is yet to
be determined at what point the contribution of a feature is close enough to zero and how
much variation is required for a feature to be removed. It would not be as desirable to
remove features that have a large contribution with variation as the fact remains it makes
a large contribution. Of course, the number of input features that need to be removed will
be determined by the data being used in a particular application.

John et al [1] gave the following definitions for the relevance of features in a classification
and a method for feature selection using induction algorithms.

strongly relevant feature the feature is necessary and can not be removed without
decreasing the number of correct classifications

weakly relevant feature  the feature sometimes contributes to the classification

irrelevant feature the feature will never contribute to the classification

This provides a possible explanation of the behaviour of the neural network feature selec-
tion.



i.  non-zero contribution/little variation determine the strongly relevant
features

ii. zero contribution/little variation determine the irrelevant features

iii. variation/close to zero contribution determine weakly relevant or irrele-
vant features

iv. variation/non-zero contribution determine weakly relevant features or
strongly relevant features

The results from using only tp, alt, tm3 and tm6 seem to indicate that these features are
strongly relevant. The results for the other networks with data removed indicate that
the remaining features are either very noisy, weakly relevant or possibly even irrelevant.
Methods of removing noise from the data are being investigated and so it may be possible
to determine which of the features truly are irrelevant.

For networks with more than one output the problem of feature selection becomes more
difficult. In the case where a network is to produce a number of classifications it may be
that the optimal solution requires removal of different features for different classes. Thus,
splitting up the classes over several networks, as is done here may be necessary. It will
be necessary to develop methods of selecting features for removal that are meaningful for
more general networks.

It would also be useful to incorporate information about how the outputs change over the
range of input values. To this end WV-curves [5] as part of the feature selection process
is currently being investigated.

It has been shown that proportion contribution is a useful measure when determining which
of the possible features are the most useful for describing the class of a particular input
vector. This method will, of course, need to be tested on further data sets. It is hoped that
both the proportion contribution and WV-curves will provide a robust feature selection
tool.
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