
1

The Intelligence Crafter: a Fuzzy
State Machine Builder Program

by F. Martin McNeill

Fuzzy Systems Engineering

619-748-7384

Fuzzy State Machines (FSM) are fuzzy generalizations of crisp state machines
(CSM). The programs that build source code implementations of crisp state table
representations are commercially available. A fuzzy state table representation with the
associated fuzzy source code build is the purpose of this presentation. The discussion
presents a working program that allows fuzzy states and fuzzy events in the table and C
function build. The discussion will invite suggestions as to the general use of the FSM and
possible methods of representation and encoding.

2

• Fuzzy Automata
• Dynamic System

• Input Events
• Output Actions
• Present States

• Next States

From .OLU�DQG�<XDQ��������“A finite automaton (also called a finite-state
machine or sequential machine) is a dynamic system operating in discrete time that
transforms sequences of input states (stimuli) received at the input of the system to
sequences of output states (responses) produced at the output of the system. The
sequences may be finite or countably infinite. The transformation is accomplished by the
concept of a dynamically changing internal state. At each discrete time, the response of
the system is determined on the basis of the received stimulus and the internal state of the
system. At the same time, a new internal state is determined, which replaces its
predecessor. The new internal state is stored in the system to be used the next time. An
automaton is called a fuzzy automaton when its states are characterized by fuzzy sets, and
the production of responses and next states is facilitated by appropriate fuzzy relations.”

The method discussed in Klir and Yuan has the Events(stimuli), States(internal
states) and Actions(responses) distributed over all of each at each discrete time. This may
be called the distributed method. The Klir and Yuan also calculates the new State truth
values and calculates the Action truth values. I call this the distributed method.

Another method has singleton values on the Events, States and Actions. The
singleton usage here is different than in fuzzy estimation transform construction. Here it
means only one of each Event, State and Action has a nonzero truth value. It might be
better to call this the lumped method. With the lumped method the truths are assigned or
locally calculated(Brubaker,1991).

Here are the Klir and Yuan calculation techniques on the distributed method:.

3

Definitions
(Derived from .OLU�DQG�<XDQ��������A finite fuzzy automaton, FA, is a

fuzzy relational system defined by the quintuple

F = (E, A, S, R, T)A ,
where

E is a nonempty finite set of input Events ,
A is a nonempty finite set of output Actions,
SP is a nonempty finite set of present States,
SN is a nonempty finite set of next States,
R (Response relation) is a fuzzy relation on S AP , and
T (state-Transition relation) is a fuzzy relation on E S SP N .

Assume that E = {e ,e e },A = {a ,a a },S = {s ,s s },1 2 n 1 2 m P P1 P2 Pq, , ,� � � and

S = {s ,s s },N N1 N2 Nq,� and let E , A , S , St t
P
t

N
t denote the fuzzy sets that characterize,

respectively, the input Events, output Actions, present State, and next State of the
automaton at time t..

The idea of a fuzzy automaton is depicted in Fig. 1. Given Et and SP
t at some time

t, fuzzy relations R and P allow us to determine At and SN
t . A fuzzy set SP

t , which
characterizes the initial internal state, must be given to make the fuzzy automaton
operate. Then, S = SP

t
N
t-1 for each time t N - (1)∈ . The equation S = SP

t
N
t-1 is assumed

to be implemented by the block called storage in Fig. 1. Its role is to store the produced
fuzzy set SN

t at each time t and release it the next time t + 1 under the label SP
t+1.

Given a sequence E , E , ,1 2
� and an initial characterization SP

1 of the internal
state, fuzzy relations R and T allow us to generate the corresponding sequences
A , A ,1 2

� and S = SP
2

N
1 , S = SP

3
N
2 ,...,. Due to the roles of relations R and T, it is

reasonable to call R a Response relation and T a state-Transition relation.
Assuming the standard fuzzy set operations, the a fuzzy automaton may operate as

follows.

4

STATE MACHINE

Fig. 1
For any given fuzzy input event Et

, the ternary state-Transition relation T is converted into a binary

relation, T
Et , on S SP N by the formula

T (s , s) = max(min[E (e), T(e , s , s)])
E Pi Nj

k N

t
k k Pi Njt

n∈
. (1)

Then, assuming the present fuzzy state SP
t
 is given, the fuzzy next state SN

t
 and fuzzy output action A t

 are
determined by the max-min compositions

S = S TN
t

P
t

Et$, (2)

A = S Rt
P
t
$. (3)

Equations (1-3) are sufficient for handling sequences of fuzzy states. Consider, for example, a sequence

E , E , ,E1 2 r
� of r fuzzy input events applied to a given initial fuzzy state SP

1
. Then, the fuzzy automaton

produces the sequence of fuzzy internal states and the corresponding sequence of fuzzy output
actions

S = S T ,

S = S T ,

S = S T

N
1

P
1

E

N
2

P
2

E

N
r

N
r - 1

E

1

2

r

$

$

������

$

,
A = S R,

A = S R,

A = S R.

1
P
1

2
N
1

r
N
r - 1

$

$

������

$

5

• Distributed Fuzzy Automata
• Meaningful Fuzzy Automata

• Lumped Automata
• Classical Crisp Automata

To define meaningful fuzzy automaton, relations R and T cannot be arbitrary. For
example, some next internal state and some output action must be assured for any given
input event and present internal state. When these requirements are satisfied, we call the
relations deterministic. The intelligence to be crafted into the automata is in the defining
of these relations R and T. With the distributed method defining the relationships is
difficult. Any tool in support of this crafting would be of value. The work by Endad Khan
is toward this purpose (Khan and Unal, 1994)..

Defining the relations for a lumped automata is more intuitively possible. At each
Action the next State and its truth is defined from authority, ready for use when the next
Event comes along. The next Event truths may also be defined at this time. The defined
values may be by assignment or by local calculations. The situation at each lumped
discrete time is relatively simplistic so hopefully intuitively manageable.

Here is an interesting nomenclature aside: If the count of the Events is 1 the
machine is a fuzzy sequencer. If the count of the States is 1 the machine is a fuzzy
decision table. With Events and States greater than one the machine is a fuzzy finite state
machine. These machines in program form become fuzzy finite state programs.

6

• Singleton and Crisp
• Singleton and Fuzzy

• Mealy or Moore
• Program Language

 When all events, states and actions of a fuzzy automaton are defined as crisp sets
and R, T are crisp relations, we obtain a crisp automation, which, in general, is
nonderterministic. When, in addition, all states are singletons taken from sets E, A, S
(singleton means all but one are functionally zero) and relations R, T are deterministic, we
obtain the classical deterministic automaton of the Mealy or Moore type. Mealy if the
actions are defined as part of the state-Transition relation. Moore if the actions are
defined as part of the present State.

 The finite Mealy or Moore state program is an extension of automata wherein we
are interested in the sequential execution of programmatic actions. The events and states
are crisp and singletons with a program action at each [event][state] intersection. In the
fuzzy finite state program the events and states may be fuzzy though still singletons. The
machine is implemented in desired program languages.

The concept of a fuzzy automaton is a broad one, which subsumes classical crisp
automata.

7

The Intelligence Crafter
• Fuzzy State Table Editor
• C Language Build
• Assembly Language Build

The Intelligence Crafter is a Windows based editable fuzzy state table and source
language compiler. The approach is similar to the fully crisp Compeditor Finite State
Compiler by AYECO Inc., Orlando,FL. The Intelligence Crafter is a Windows program
where the Compeditor is console interface.

After editing, the Intelligence Crafter will build a fuzzy finite state program that
will run the machine in your program environment. Any program language is possible. C
is the first supported language. Microprocessor assembly language is the second target
language.

The Intelligence Crafter is a 32 bit program. Thus it requires WinNT or Windows
95 as an operating system. Win32s is not sufficient.

8

• Fuzzy State Table

A matrix table view of the needed states, events and actions is provided. States in
a row across the top, events in a column on the left and transition relations in the
intersecting matrix cells. Action outputs may occur at states or transitions.

The Intelligence Crafter fuzzy state table editor supports from 1 to 256 States and
1 to 256 Events. The maximum Action cell is thus 256 X 256 = 65536. The view is of a
scrollable spreadsheet. A complete set of spreadsheet matrix editing tools is provided. The
tool will evolve as wants and desires are received from users. The goal is to provide the
several lumped state machine architectures provided by the Compeditor with the addition
of fuzziness. If it can be seen how to meaningfully define a distributed fuzzy state
machine this architecture will be supported also.

A state table debugger allows the designer to exercise and simulate the fuzzy finite
state program’s operation.

9

• Matrix Cell Editor
• Event and State Editor

Clicking on each matrix part produces a dialog box for editing that piece of the
fuzzy finite state machine. The matrix editing tools include cell and block copying and
pasting. Separate commands for adding, subtracting, copying and pasting complete
roes(Events) and columns(States) are provided.

10

Implementation

1. States
2. Events
3. Actions
4. Truth Functions

Implementing and editing the fuzzy state machine is eased through representing it
at the top level as a state table. The appearance is the same as a crisp state table except
for the explicit addition of the various truth values.
1. The first step as in the crisp is to identify the unique states in which the system will
exist. The number of states may be reduced as one state through fuzziness may cover the
range of desired values rather than needing a range of states. The initial state must be
chosen.
2. Second, identify the system events. These input events may come from outside or may
come from internal programmatic action. Again, the fuzzy state machine may require
fewer explicit events. These states and events then define the dimensions of a state table.
States over the horizontal axis, events over the vertical axis and actions at each of the
table matrix cells.
3. Third, define the actions undertaken at each of the table matrix cells. All the steps to
this point are the same as a crisp implementation.
4. Create truth functions for each state. This function may be a definition or a calculation
based on present State and input Event. Truth value must be provided for the initial State.
Subsequent States truths will be defined at state-Transition occurrence.
5. Build this state table representation of the fuzzy state machine as a fuzzy state program
function in the language of your choice.

With this fuzzy state program in source or object format the intelligent dynamics
of your fuzzy state machine may be included, compiled and executed in your application
program.

11

EXAMPLE 1 (distributed, truths by calculation)
Consider a fuzzy automaton with E = {e , e }1 2 , A = {a , a , a }l 2 3 , S = {s , s , s , s }1 2 3 4 whose
output relations R and state-Transition relation T are defined, respectively, by the matrix and the three-
dimensional array

R =

�

!

"

$

#
#
#
#

s

s

s

s

a a a

P

P

P

P

1

2

3

4

1 2 3

1 0 0

0 1 0

0 0 1

5 1 3. .

, S=

�

!

"

$

#
#
#
#

�

!

"

$

#
#
#
#

�

!

"

$

#
#
#
#
#
#
#

s

s

s

s

s s s s
s

s

s

s

s s s s
e e

P

P

P

P

N N N N

P

P

P

P

N N N N

1

2

3

4

1 1 1 1

1

2

3

4

1 1 1 1

1 2

0 4 2 1

3 1 0 2

5 0 0 1

0 0 0 1

0 0 1 0

2 0 0 1

0 0 0 1

1 3 0 6

. .

. .

.

.

. .

To describe how this fuzzy automaton operates, let fuzzy sets describing events, actions, and states at any
time t be defined by the vectors

E t t
1

t
2= [E (e),E (e)], A = [A (a),A (a),A (a)]t t

1
t

2
t

3 ,

SP
t

P
t

1 P
t

2 P
t

3 P
t

4= [S (s),S (s),S (s),S (s)].

Assume now that the initial fuzzy state of the automaton is S = [1 .8 .6 .4]P
1

 and its fuzzy input state

is E = [1 .4]1
. Then, using (1) and for example,

T

s

s

s

s

s s s s

E

P

P

P

P

N N N N

1

1

2

3

4

1 2 3 4

0 4 4 1

3 1 0 4

5 0 0 1

4 3 0 1

=

�

!

"

$

#
#
#
#

. .

. .

.

. .

.

T (s , s) = max(min[E (e), T(e , s , s), min[E (e), T(e , s , s)])

= max(min[], min[.4, 1])

= max(.2, .4) = .4.

E 1 3
t

1 1 1 3
t

2 2 1 31

1 2, .

To calculate the fuzzy next state E1 and the fuzzy output state B1 of the automaton, we now use (2) and (3):

SN
1

1 8 6 4

0 4 4 1

3 1 0 4

5 0 0 1

4 3 0 1

5 8 4 1=

�

!

"

$

#
#
#
#

=. . .

. .

. .

.

. .

. . .$

.
A

1
1 8 6 4

1 0 0

0 1 0

0 0 1

5 1 3

1 8 6=

�

!

"

$

#
#
#
#

=. . .

. .

. .$

Assuming now that the next fuzzy input is A 2 0 1= , we obtain

S S TN
1

N E

2
2 5 8 4 1

0 0 1 0

2 0 0 1

0 0 0 1

1 3 0 6

1 3 5 8= =

�

!

"

$

#
#
#
#

=$ $. . .
.

. .

. . .

A SN
12 5 8 4 1

1 0 0

0 1 0

0 0 1

5 1 3

5 1 4= =

�

!

"

$

#
#
#
#

=$ $R . . .

. .

. .

Similarly we can produce larger sequences of fuzzy internal and output states for any given sequence of fuzzy
input states.

12

EXAMPLE 2 (lumped, truths by assignment)
Motor Speed Control

States
Events: 1. Stop, T1 = 1.0 2. Run, T2 = .0
Off, T3 = 1.0 1 1 : T2 = .0
Slower, T4 = 1.0 1 2 : T2 = T2 - .1
Faster, T5 = 1.0 2 : T2 = T2 + .1 2 : T2 = T2 + .1

This 2 by 3 fuzzy state table depict a fuzzy state machine that would require an 11
by 3 crisp state table. The Run truth (T2) takes the place of 10 separate Run states. The
first number in each action cell is the next state. The second is an assignment statement
on truth value changes. The Run state truth value is the action on motor speed.
Exceptions and limits are ignored in this example.

The C fuzzy state program consists of a switch statement on three cases covering
the three different action cells. Global arrays keep track of the states and truths. The
Event comes from a parameter in the function call.

References and Resources
Papers:
1. Dal Cin , M. [1975a], “Fuzzy state automata: Their stability and fault tolerance.”

,QWHUQ��-�RI�&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFHV, 4(1), pp. 63-80.
2. Dal Cin , M. [1975b], “Modification tolerance of fuzzy state automata.” ,QWHUQ��-�RI

&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFHV, 4(1), pp. 81-93.
���Gaines, B. R. and I. J. Kohout [1975], �´7KH�ORJLF�RI�DXWRPDWD�µ�,QWHUQ��-��RI

*HQHUDO�6\VWHPV��������SS����������

���.KDQ��(��DQG�)��$��8QDO�>����@��´5HFXUUHQW�)X]]\�/RJLF�8VLQJ�1HXUDO�1HWZRUN�µ

7KH�7KLUG�,(((�&RQIHUHQFH�RQ�)X]]\�6\VWHPV��SS��������

���.KDQ��(��DQG�)��$��8QDO�>����@��´$�)X]]\�)LQLWH�6WDWH�0DFKLQH�,PSOHPHQWDWLRQ

%DVHG�RQ�D�1HXUDO�)X]]\�6\VWHP�µ�������������;����,(((������������

6. Mizumoto M, J. Toyoda, and K. Tanaka [1969], “Some considerations on fuzzy
automata”, -��RI�&RPSXWHU�DQG�6\VWHP�6FLHQFHV, 3(4), pp. 409-422.

���Mockof, J. [1991], “A category of fuzzy automata.”�,QWHUQ��-��RI�*HQHUDO�6\VWHPV�

�������SS��������

���Ray, A. K., B. Chatterjee and A. K. Majundar. [1991], “A formal power series
approach to the construction of minimal fuzzy automata.” ,QIRUPDWLRQ�6FLHQFHV, 55(1-
3), pp.189-207.

13

���6DQWRV��(��6��>����@��´0D[LPXP�DXWRPDWD�µ�,QIRUPDWLRQ�DQG�&RQWURO���������SS�

��������

����6DQWRV��(��6��>����@��´)X]]\�VHTXHQWLDO�IXQFWLRQV�µ�-��RI�&\EHUQHWLFV��������SS�����

���

����6DQWRV��(��6��DQG�:��*��:HH�>����@��´5HDOL]DWLRQ�RI�IX]]\�ODQJXDJHV�E\

SUREDELOLVWLF��PD[�SURGXFW�DQG�PD[LPXP�DXWRPDWD�µ�,QIRUPDWLRQ�6FLHQFHV�������

SS�������

����6DQWRV��(��6��DQG�:��*��:HH�>����@��´*HQHUDO�LQIRUPDWLRQ�RI�VHTXHQWLDO

PDFKLQHV�µ�,QIRUPDWLRQ�DQG�&RQWURO��������SS�������

����:HH��:��*��DQG�.��6��)X�>����@��´$�IRUPXODWLRQ�RI�IX]]\�DXWRPDWD�DQG�LWV

DSSOLFDWLRQ�DV�D�PRGHO�RI�OHDUQLQJ�V\VWHPV�µ�,(((�7UDQV��RQ�6\VWHPV��0DQ�DQG

&\EHUQHWLFV��������SS���������

%RRNV�

1. Brubaker, D. I. ,QWURGXFWLRQ�WR�)X]]\�/RJLF�6\VWHPV. The Huntington Group. Menlo
Park, CA 1991.

2. Brubaker, D. I. +XQWLQJWRQ�7HFKQLFDO�%ULHI. The Huntington Group. Menlo Park, CA .
March 1993 Number 36.

3. Kandel, A. and C. S. Lee [1979], Fuzzy Switching and Automata: Theory and
Application. Crane & Russak, New York.

���.OLU��*HRUJH�-��DQG�<XDQ��%R��)X]]\�6HWV�DQG�)X]]\�/RJLF��7KHRU\�DQG

$SSOLFDWLRQV��8SSHU�6DGGOH�5LYHU��1-����3UHQWLFH�+DOO�������

5. Negoita, C. V. and D. A. Ralescu [1975b], Applications of Fuzzy Sets to Systems
Analysis, Birkhauser, Besel and Stuttgart, and Halsted Press, New York.

6. Pal, S. K. and D. K. D. Majumder [1986], Fuzzy Mathematical Approach to Pattern
Recognition. John Wiley, New York.

7. Wechler, W. [1978], The Concept of Fuzziness in Automata and Language Theory.
Academic-Verlag, Berlin.

These writings not only cover theoretical aspects of fuzzy automata, but also explore their
applicability in various areas, such as fault-tolerant design, learning, formal languages and
grammars, or pattern recognition

2WKHU�%RRNV�

1. Edelberg, Allen Y. Compeditor II C/C++ Finite State Compiler Reference Manual.
AYECO Inc., Orlando, FL

���0F1HLOO��)��0DUWLQ�DQG�7KUR��(OOHQ��)X]]\�/RJLF��$�3UDFWLFDO�$SSURDFK��%RVWRQ�

0$����$FDGHPLF�3UHVV�3URIHVVLRQDO�������

