
MR/Finance

Multiresolution Analysis of

Time Series

Documentation

J-L. Starck and F. Murtagh

(c) CEA

Software and Documentation: www.multiresolution.com

September 2001

Contents

1 Introduction 3

2 Wavelets and Prediction 3

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The �a trous wavelet transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 The time-based �a trous wavelet transform . . . . . . . . . . . . . . . . . . . . . 5

2.4 The redundant Haar wavelet transform . . . . . . . . . . . . . . . . . . . . . . . 5

3 Autoregressive Multiscale Prediction 6

3.1 Stationary signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Non-stationary signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 AR order determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1



4 Smoothing Time Series by the Wavelet Transform 8

4.1 Statistical signi�cance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Noise modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Filtering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Programs 13

5.1 Conversion: im1d convert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Statistical information: im1d info . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.3 Tendency estimation: im1d tend . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.4 Multiresolution transform: mr1d trans . . . . . . . . . . . . . . . . . . . . . . . 16

5.5 Wavelets and autocorrelation function: mr1d acor . . . . . . . . . . . . . . . . 19

5.6 Filtering: mr1d �lter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.7 Multiscale entropy �ltering: mw1d �lter . . . . . . . . . . . . . . . . . . . . . . 21

5.8 Transition detection: mr1d nowcast . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.9 Prediction: mr1d fcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2



1 Introduction

The wavelet transform (WT) has been proposed for time series analysis in many papers over

the last few years. In [3, 9] wavelet transform analysis was shown to be important for �nancial

time series prediction in the case where the market can be modeled by fractional Brownian

motion (fBm), a 1=f fractal process, which implies the presence of correlations across time.

Wavelets are important also for the analysis of non-stationary signals [15], and a link between

wavelets and a di�erence operator has been made in [16].

Several approaches have been proposed for time series �ltering and prediction by the

WT, based on a neural network [17, 2], Kalman �ltering [4, 8], or an AR (autoregression)

model [10]. In [17, 10] the undecimated Haar transform was used. This choice of the Haar

transform was motivated by the fact that the wavelet coeÆcients are calculated only from

data obtained previously in time, and the choice of an undecimated wavelet transform avoids

aliasing problems.

Section 2 presents the �a trous Haar wavelet transform, and section 3 shows how this

transform is well suited for the design of a multiresolution AR model (MAR).

2 Wavelets and Prediction

2.1 Introduction

The continuous wavelet transform of a continuous function produces a continuum of scales as

output. However input data are usually discretely sampled, and furthermore a \dyadic" or

two-fold relationship between resolution scales is both practical and adequate. The latter two

issues lead to the discrete wavelet transform.

The output of a discrete wavelet transform can take various forms. Traditionally, a triangle

(or pyramid in the case of 2-dimensional images) is often used to represent all that is worth

considering in the sequence of resolution scales. Such a triangle comes about as a result

of \decimation" or the retaining of one sample out of every two. The major advantage of

decimation is that just enough information is kept to allow exact reconstruction of the input

data. Therefore decimation is ideal for an application such as compression. It can be easily

shown too that the storage required for the wavelet transformed data is exactly the same as

is required by the input data. The computation time for many wavelet transform methods is

also linear in the size of the input data, i.e. O(n) for an n-length input time series.

A major disadvantage of the decimated form of output is that we cannot simply { visually

or graphically { relate information at a given time point at the di�erent scales. With somewhat

greater diÆculty, however, this goal is possible. What is not possible is to have shift invariance.

This means that if we had deleted the �rst few values of our input time series, then the output

wavelet transformed, decimated, data would not be the same as heretofore. We can get around

this problem at the expense of a greater storage requirement, by means of a redundant or

non-decimated wavelet transform.

A redundant transform based on an n-length input time series, then, has an n-length

resolution scale for each of the resolution levels that we consider. It is easy, under these

circumstances, to relate information at each resolution scale for the same time point. We do

have shift invariance. Finally, the extra storage requirement is by no means excessive.

The redundant, discrete wavelet transform described in the next section is one used in

Aussem et al. [1]. The successive resolution levels are formed by convolving with an increas-

ingly dilated wavelet function which looks rather like a Mexican sombrero (central bump,
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symmetric, two negative side lobes). Alternatively these resolution levels may be constructed

by (i) smoothing with an increasingly dilated scaling function looking rather like a Gaussian

function de�ned on a �xed interval (support) { the function used is in fact a B3 spline; and

(ii) taking the di�erence between successive versions of the data which are smoothed in this

way.

2.2 The �a trous wavelet transform

Our input data is decomposed into a set of band-pass �ltered components, the wavelet coeÆ-

cients, plus a low-pass �ltered version of our data, the continuum (or background or residual).

We consider a signal or time series, fc0;lg, de�ned as the scalar product at samples l of the

function f(x) { our input data { with a scaling function �(x) which corresponds to a low-pass

�lter:

c0(k) =< f(x); �(x� k) > (1)

The scaling function is chosen to satisfy the dilation equation:

1

2
�
�x
2

�
=
X
k

h(k)�(x � k) (2)

where h is a discrete low-pass �lter associated with the scaling function. This means that a

low-pass �ltering of the signal is, by de�nition, closely linked to another resolution level of

the signal. The distance between levels increases by a factor 2 from one scale to the next.

The smoothed data fcj;lg at a given resolution j and at a position k is the scalar product

cj;l =
1

2j
< f(x); �(

x� k

2j
) > (3)

This is consequently obtained by the convolution:

cj+1;l =
X
k

h(k) cj;l+2jk (4)

The signal di�erence between two consecutive resolutions is:

wj+1;l = cj;l � cj+1;l (5)

which we can also, independently, express as:

wj;l =
1

2j
< f(x);  (

x� k

2j
) > (6)

Here, the wavelet function is de�ned by:

1

2
 (
x

2
) = �(x)� 1

2
�(
x

2
) (7)

Equation 6 de�nes the discrete wavelet transform, for a resolution level j.

A series expansion of the original signal, , in terms of the wavelet coeÆcients is now given

as follows. The �nal smoothed signal is added to all the di�erences :

c0;l = cJ;l +

JX
j=1

wj;l (8)
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This equation provides a reconstruction formula for the original signal. At each scale j, we

obtain a set which we call a wavelet scale. The wavelet scale has the same number of samples

as the signal, i.e. it is redundant, and decimation is not used.

In view of the gaps manifest in equation 2, a good choice for h is a spline which leads to

h = ( 1

16
; 1
4
; 3
8
; 1
4
; 1

16
). The associated wavelet function,  , is similar to a Mexican hat function,

i.e. central peak and negative side lobes.

Equation 4 also is relevant for the name of this transform (\with holes"). Unlike widely

used non-redundant wavelet transforms, it retains the same computational requirement (lin-

ear, as a function of the number of input values). Redundancy (i.e. each scale having the same

number of samples as the original signal) is helpful for detecting �ne features in the detail

signals since no aliasing biases arise through decimation.

Our application { prediction { points to the critical importance for us of the �nal values.

Our time series is �nite, and values n, n-1, n-2, ..., are of greatest interest for us. Any

symmetric wavelet function is problematic for the handling of such a boundary (or edge). We

also cannot use wavelet coeÆcients if these coeÆcients have been calculated from \future"

data values. An asymmetric �lter can allow us to get around this problem. Such a wavelet

function can deal properly with the edge of importance to us. The �rst values of our time

series, which also constitute a boundary, may be artibrarily treated as a result, but this is of

no practical consequence.

2.3 The time-based �a trous wavelet transform

The �a trous wavelet transform with a wavelet function related to a spline function, as described

above, is not consistent with a directed (time-varying) data stream. We now keep the wavelet

function, but alter the wavelet transform, to make of it a multiscale transform which is

appropriate for a data stream. We consider a signal s(1), s(2),..., s(n), where n is the present

time-point.

1. For index k suÆciently large, carry out an �a trous wavelet transform on fs(1); s(2); :::; s(k)g.

2. Retain the detail coeÆcient values, and the continuum value, for the kth time-point

only (cf. equation 8): w1;k; w2;k; wJ;k; cJ;k. Note that summing these values gives s(k).

3. If k is less than n, set k to k+1 and return to Step 1.

This produces an additive decomposition of the signal, which is similar to the �a trous

wavelet transform decomposition with the B3 spline on fs(1); s(2); :::; s(k); :::; s(n)g. The

computational time is evidently greater, O(n2) as against O(n).

We have not touched on an important matter in regard to equation 2: how to handle

signal boundaries. Although other strategies could be envisaged, we use a mirror approach.

This is tantamount, of course, to rede�ning the discrete �lter associated with the scaling

function in the signal boundary region; and to rede�ning the associated wavelet function in

this region. This strategy is of particular relevance when we work on an ordered data stream.

We hypothesize future data based on values in the immediate past. Not surprisingly there

is discrepancy in �t in the succession of scales, which grows with scale as larger numbers of

immediately past values are taken into account.

2.4 The redundant Haar wavelet transform

The Haar wavelet transform was �rst described in the early years of this century and is de-

scribed in almost every text on the wavelet transform. As already mentioned, the asymmetry
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Figure 1: This �gure shows which pixels of the input signal are used to calculate the last

wavelet coeÆcient in the di�erent scales.

of the wavelet function used makes it a good choice for edge detection, i.e. localized jumps.

The usual Haar wavelet transform, however, is a decimated one. We now develop a non-

decimated or redundant version of this transform. This will be an �a trous algorithm, but with

a di�erent pair of scaling and wavelet functions compared to those used previously.

The non-decimated Haar algorithm is exactly the same as the �a trous algorithm, except

that the low-pass �lter h, ( 1

16
; 1
4
; 3
8
; 1
4
; 1

16
), is replaced by the simpler �lter (1

2
; 1
2
). There h

is now non-symmetric. Consider the creation of the �rst wavelet resolution level. We have

created it from by convolving the original signal with h. Then:

cj+1;l = 0:5(cj;l�2j + cj;l) (9)

and

wj+1;l = cj;l � cj+1;l (10)

At any time point, l, we never use information after l in calculating the wavelet coeÆcient.

Figure 1 shows which pixels of the input signal are used to calculate the last wavelet coeÆcient

in the di�erent scales. A wavelet coeÆcient at a position t is calculated from the signal samples

at positions less than or equal to t, but never larger.

3 Autoregressive Multiscale Prediction

3.1 Stationary signal

Assuming a stationary signal D = (d1; : : : ; dN ), the AR (autoregressive) multiscale prediction

model is:

dt+1 =

JX
j=1

AjX
k=1

aj;kwj;t�2j(k�1) +

AJ+1X
k=1

aJ+1;kcJ;t�2J (k�1) + �(t+ 1) (11)

whereW = w1; : : : ; wJ ; cJ represents the Haar �a trous wavelet transform ofD (D =
PJ

j=1
wj+

cJ). For example, choosing Aj = 1 for all resolution levels j leads to the equation

dt+1 =

JX
j=1

ajwj;t + aJ+1cJ;t + �(t+ 1) (12)
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Figure 2: Wavelet coeÆcients which are used for the prediction of the next value.

Figure 2 shows which wavelet coeÆcients are used for the prediction using Aj = 2 for all res-

olution levels j, and a wavelet transform with �ve scales (four wavelet scales + the smoothed

array). In this case, we can see that only ten coeÆcients are used, but taking into account

low resolution information. This means that a long term prediction can easily be introduced,

either by increasing the number of scales in the wavelet transform, or by increasing the AR

order in the last scales, but with a very small additional number of parameters. To �nd the

Q =
PJ+1

j=1
Aj unknown parameters:

ffa1;1; :::; a1;A1
g; :::; faj;1; :::; aj;Aj

g; :::; faJ;1; :::; aj;AJ
g; faJ+1;1; :::; aj;AJ+1gg

of our model, we need to resolve the following equation: AX = S, where A;X;W are de�ned

by:

At = (LN�1; : : : ; LN�P )

Li = (w1;i; : : : ; w1;i�2A1
; : : : ; w2;i; : : : ; w2;i�22A2

; : : : ; wJ;i; : : : ; wJ;i�2JAJ
; cJ;i; : : : ; cJ;i�2JAJ+1

)

Xt = (a1;1; : : : ; a1;A1
; a2;1; : : : ; a2;A2

; : : : ; aJ;1; : : : ; aJ;Aj
; : : : ; aJ+1;1; : : : ; aJ+1;AJ+1

)

St = (dN ; : : : ; di+1; : : : ; dN�P+1)

We have P equations and Q unknowns, so A is a Q � P matrix (P rows Li, each with Q

elements), X and S are respectively Q- and P -sized vectors. When Q is larger than P , many

minimization methods may be used to �nd X. In our experiments, we used the standard SVD

method.

3.2 Non-stationary signal

When the signal is not stationary, the previous method will not correctly model our data.

However, in many cases, the non-stationary part a�ects the low frequency components, while

the high frequencies may still give rise to stationary behavior. Then we can separate our

signal D into two parts, the low and the high frequencies L and H:

L = cJ

H = D � L =

JX
j=1

wj

dt+1 = lt+1 + ht+1
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The smoothed array of the wavelet transform is �rst subtracted from the data, and we consider

now that the signal H is stationary. Our prediction will be the coaddition of two predicted

values, one on the signal H by the AR Multiscale model, and the second on the low frequency

component by some other method. The AR-Multiscale model gives:

ht+1 =

JX
j=1

AjX
k=1

aj;kwj;t�2j(k�1) + �(t+ 1) (13)

We have now Q =
PJ

j=1
Aj unknown parameters:

ffa1;1; :::; a1;A1
g; :::; faj;1; :::; aj;Aj

g; :::; faJ;1; :::; aj;AJ
gg

and we need to resolve the following equation: AX = S, where A;X;W are de�ned by:

At = (LN�1; : : : ; LN�P )

Li = (w1;i; : : : ; w1;i�2A1
; : : : ; w2;i; : : : ; w2;i�22A2

; : : : ; wJ;i; : : : ; wJ;i�2JAJ
)

Xt = (a1;1; : : : ; a1;A1
; a2;1; : : : ; a2;A2

; : : : ; aJ;1; : : : ; aJ;Aj
)

St = (hN ; : : : ; hi+1; : : : ; hN�P+1)

Many methods may be used for the prediction of lt+1. The problem is simpli�ed by the fact

that L is very smooth. We used a polynomial �tting of degree 3 in our experiments.

3.3 AR order determination

The AR order at the di�erent scales must now be de�ned. It can be a user parameter, but

an automatic method is generally preferable. At each scale j, we need to know how many

coeÆcients should be used. This value Aj may be determined by looking at how the wavelet

coeÆcients at the scale j are correlated. Therefore each scale is �rst analyzed separately, and

the best AR order Aj at scale j minimizes:

J(Aj) = log �2Aj
+ P(Aj)

where �Aj
is the prediction error, and P is a penalty function, which increases with the AR

order. Examples of penalty functions are:

� AIC: AIC = log �2Aj
+

2Aj

N

� AICC: AICC = log �2Aj
+

N+Aj

N�Aj�2

� SIC: SIC = log �2Aj
+

Aj logN

N

4 Smoothing Time Series by the Wavelet Transform

4.1 Statistical signi�cance test

Signals generally contain noise. Hence the wavelet coeÆcients are noisy too. For �ltering,

it is necessary to know if a coeÆcient is due to signal (i.e. it is signi�cant) or to noise. We

introduce a statistical signi�cance test for wavelet coeÆcients. Let H0 be the hypothesis that
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the image is locally constant at scale j. Rejection of hypothesis H0 depends (for a positive

coeÆcient value) on:

P = Prob(WN > wj(x; y))

and if the coeÆcient value is negative

P = Prob(WN < wj(x; y))

Given a threshold, �, if P > � the null hypothesis is not excluded. Although non-null, the

value of the coeÆcient could be due to noise. On the other hand, if P < �, the coeÆcient

value cannot be due only to the noise alone, and so the null hypothesis is rejected. In this

case, a signi�cant coeÆcient has been detected.

Our noise modeling in the wavelet space is based on the assumption that the noise in the

data follows a distribution law, which can be:

� a Gaussian distribution

� a Poisson distribution

� a Poisson + Gaussian distribution (e.g., noise in CCD detectors)

� Poisson noise with few events (e.g., low-valued arrival counts)

� Speckle noise

� Root Mean Square map: we have a noise standard deviation of each data value.

If the noise does not follow any of these distributions, we can derive a noise model from

any of the following assumptions:

� it is stationary, and we have a subimage containing a realization of the noise,

� it is additive, and non-stationary,

� it is multiplicative and stationary,

� it is multiplicative, but non-stationary,

� it is unde�ned but stationary,

� it is additive, stationary, and correlated.

4.2 Noise modeling

We summarize here the di�erent noise modeling strategies implemented. The term \pixel"

can be replaced by \time step" or \time interval" in the case of a signal representing a time

series.

1. Gaussian noise

Given stationary Gaussian noise, it suÆces to compare wj(x; y) to k�j .

if j wj j � k�j then wj is signi�cant

if j wj j < k�j then wj is not signi�cant
(14)
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2. Poisson noise

If the noise in the data I is Poisson, the transform

t(I(x; y)) = 2

r
I(x; y) +

3

8
(15)

acts as if the data arose from a Gaussian white noise model (Anscombe, 1948), with � =

1, under the assumption that the mean value of I is large. The signal is �rst transformed,

and the same processing is performed as in the Gaussian case. This processing works if

the number of events per pixel is greater than 30. Otherwise the detection levels will be

over-estimated, and the case \Poisson noise with few events" should instead be used.

3. Poisson noise + Gaussian

The generalization of the variance stabilizing is:

t(I(x; y)) =
2

�

r
�I(x; y) +

3

8
�2 + �2 � �g

where � is the gain of the detector, and g and � are the mean and the standard deviation

of the read-out noise.

4. Multiplicative noise

The signal is �rst log-transformed. Then the transformed signal is treated as a signal

with Gaussian additive noise.

5. Non-stationary additive noise

The noise is assumed to be locally Gaussian. So we must consider one noise standard

deviation per pixel. The Root Mean Square (RMS) map R�(x; y) can be furnished by

the user, or automatically calculated by estimating for each pixel the standard deviation

in a box around it.

From R�(x; y), we have to compute the noise standard deviation �j(x; y) for any wavelet

coeÆcient wj(x; y). wj(x; y) is obtained by the correlation product between the signal

I and a function gj : wj(x; y) =
P

k

P
l I(x; y)gj(x+ k; y + l).

Then we have: �2j (x; y) =
P

k

P
lR

2
�(x; y)g

2
j (x+ k; y + l).

In the case of the �a trous algorithm, the coeÆcients gj(x; y) are not known exactly, but

they can easily be computed by taking the wavelet transform of a Dirac wÆ . The map

�2j is calculated by correlating the square of the wavelet scale j of wÆ by R2
�(x; y).

6. Non-stationary multiplicative noise

The signal is �rst log-transformed. Then the transformed signal is treated as an signal

with non-stationary additive noise.

7. Unde�ned stationary noise

A k-sigma clipping is applied at each scale.

8. Unde�ned noise

The standard deviation is estimated for each wavelet coeÆcient, by considering a box

around it, and the calculation of � is done in the same way as for non-stationary additive

noise. The latter determines a map of variances for the signal, and then derives the

variances for the wavelet coeÆcients. \Unde�ned noise" does not assume additivity of

the noise, and so calculates the noise from local variance in the resolution scales.
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9. Stationary correlated noise

The noise is stationary, but correlated. This noise modeling requires a noise map,

containing a realization of the noise. The threshold at a scale j Sj is found by computing

the wavelet transform of the noise map, and using the histogram of Sj to derive the noise

probability density function, PDF, of Sj.

10. Poisson noise with few events

This case corresponds to noise with a very small number of events per pixel. This special

case requires more processing time, due to the fact that a set of autoconvolutions of the

histogram of the wavelet function must be calculated.

4.3 Filtering Methods

Hard and soft thresholding

Many �ltering methods have been proposed in the last ten years. Hard thresholding consists

of setting to 0 all wavelet coeÆcients which have an absolute value lower than a threshold Tj:

~wj;k =

�
wj;k if j wj j� Tj
0 otherwise

where wj;k is a wavelet coeÆcient at scale j and at spatial position k.

Soft thresholding consists of replacing each wavelet coeÆcient by the value ~w where

~wj;k =

�
sgn(wj;k)(j wj;k j �Tj) if j wj j� Tj
0 otherwise

When the discrete orthogonal wavelet transform is used, it is interesting to note that the

hard and soft thresholded estimators are solutions of the following minimization problems:

~w = argwmin
1

2
k y �W�1w k2l2 +� k w k2l0 hard threshold

~w = argwmin
1

2
k y �W�1w k2l2 +� k w k2l2 soft threshold

where y is the input data, W the wavelet transform operator, and l0 indicates the limit of lÆ

when Æ ! 0. This counts in fact the number of non-zero elements in the sequence.

Several approaches have been proposed for deriving the Tj thresholds.

k-Sigma thresholding

The k-Sigma approach consists of deriving Tj from the probability of false detection �

Prob(w > Tj) < �

Given stationary Gaussian noise, it suÆces to compare wj;k to k�j , where �j is the noise

standard deviation in band j. Often k is chosen as 3, which corresponds approximately to

� = 0:002.
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Iterative �ltering

When a redundant wavelet transform is used, the result after a simple hard thresholding can

still be improved by iterating. Indeed, we want the wavelet transform of our solution s to

reproduce the same signi�cant wavelet coeÆcients (i.e., coeÆcients larger than Tj). This can

be expressed in the following way:

(Ws)j;k = wj;k if j wj;k j> k�j (16)

where wj;k are the wavelet coeÆcients of the input data y. Denoting M the multiresolution

support (i.e. M(j; k) = 1 if j wj;k j> k�j , and 0 otherwise), we want:

M:Ws =M:Wy

The solution can be obtained by the following Van Cittert iteration [13]:

sn+1 = sn +W�1(M:Wy �M:Wsn)

= sn +W�1(M:WRn) (17)

where Rn = y � sn. Another approach consists of minimizing the functional

J(s) =kM:Wy �M:Ws k2 (18)

using a minization method such as the �xed step gradient or the conjugate gradient.

Universal threshold

Universal thresholding consists of using a threshold [7, 6] Tj =
p
2 log(n)�j, where n is the

number of pixels in the input data. It ensures with a probability tending to one that all noise

is removed. The drawback is that it tends to give an oversmoothed estimator.

SURE threshold

The SURE threshold minimizes Stein's unbiased risk estimator [5].

MULTI-SURE thresholding

The SURE method is applied independently on each band of the wavelet transform.

MAD thresholding

The Median Absolute Deviation (MAD) threshold on a given band j is:

Tj = k�j;m

where �j;m is the Median Absolute Deviation (�j;m = MED(j wj j)=0:6745, where MED is

the median function). The MAD method does not requires any knowledge about the noise

such as the noise standard deviation. Is is considered as a very good method to denoise data

contaminated by correlated noise.
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Multiscale entropy �ltering

The multiscale entropy �ltering method [14, 12] (MEF) consists of measuring the information

h relative to wavelet coeÆcients, and of separating this into two parts hs, and hn. The

expression hs is called the signal information and represents the part of h which is certainly not

contaminated by the noise. The expression hn is called the noise information and represents

the part of h which may be contaminated by the noise. We have h = hs + hn. Following this

notation, the corrected coeÆcient ~w should minimize:

J( ~wj) = hs(wj � ~wj) + �hn( ~wj) (19)

i.e. there is a minimum of information in the residual (w � ~w) which can be due to the

signi�cant signal, and a minimum of information which could be due to the noise in the

solution ~wj.

In order to verify a number of properties, the following functions have been proposed for

hs and hn in the case of Gaussian noise [14]:

hs(wj) =
1

�2j

Z jwjj

0

u erf

 
j wj j �up

2�j

!
du (20)

hn(wj) =
1

�2j

Z jwjj

0

u erfc

 
j wj j �up

2�j

!
du

Simulations have shown [11] that the MEF method produces a better result than the

standard soft or hard thresholding, from both the visual aspect and PSNR (peak signal-to-

noise ratio). Figures 3 and 4 show the �ltering respectively on simulated noisy blocks and on

a real spectrum.

5 Programs

5.1 Conversion: im1d convert

Program im1d convert converts a 1D signal from one data format to another. Currently

supported signal formats are the ASCII format, the FITS format, and Excel format. SuÆxes

for these formats are respectively \.dat", \.�ts", and \.csv"". The \-s" option allows the user

to suppress a given number of lines at the beginning of the �le. This option has an e�ect

only for ASCII and Excel input formats. The ASCII format consists of a series of numbers

separated by a space, a tab, or a new line.

USAGE: im1d convert [-s] �le name in �le name out

Examples:

� im1d convert sig.dat image.�ts

Converts an ASCII �le to FITS format.

� im1d convert -s 2 sig.dat image.�ts

Ditto, but the �rst lines are not taken into account.
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5.2 Statistical information: im1d info

im1d info gives information about a signal:

� the number of pixels

� the minimum, the maximum

� the arithmetic mean: �x = 1

N

P
k xk

� the standard deviation: � = 1

N

P
k(xk � �x)2 =

p
�x2 � �x2

� the 
ux: F =
P

k xk

� the energy: E =
P

k x
2

k

� the skewness: S = 1

N�3

P
k(xk � �x)3 = 1

�3
( �x3 � 3�x �x2 + 2�x3)

S is zero if the data are symmetrically distributed around the mean. If a tail extends
to the right (resp. left), S is positive (resp. negative).

� the kurtosis: C = 1

N�4

P
k(xk � �x)4 � 3 = 1

�4
( �x4 � 4�x �x3 + 6 �x2�x2 � 3�x4)� 3

Positive C implies a higher peak and larger wings than the Gaussian distribution with
the same mean and variance. Negative C means a wider peak and shorter wings.

� Measure of dependence: calculate the autoregressive model which �ts the data, for
all orders between 1 and M , and select the AR model which minimizes the following
equation:

J(p) = log �2A(p) + P(A(p))

where �A is the prediction error, and P is a penalty function, which increases with the
AR order. Examples of penalty functions are:

{ AIC: AIC = log �2Aj
+

2Aj

N

{ AICC: AICC = log �2Aj
+

N+Aj

N�Aj�2

{ SIC: SIC = log �2Aj
+

Aj logN

N

When the \-a" option is set, then the autocorrelation function �(h) is also calculated:

�(h) =

(h)


(0)
(21)

where 
(h) is the autocovariance function de�ned by:


(h) =
1

N

X
k

(xk+h � �x)(xk � �x) (22)

The command line is:

USAGE: im1d info �le name in

where options are:

� [-a Nbr of Lags]

Calculate the autocorrelation function (AF) with a given number of lags. The output

AF is saved in a �le of name \autocor". Default number of lags is 10.
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� [-O Estimation AR Order Method]

1. AIC

2. AICC

3. BIC

Default is BIC method.

� [-M MaxAROrder]

Maximum AR model order. Default is 10.

Examples:

� im1d info data.dat

Gives information about the data.

� im1d info -a 10 data.dat

Ditto, but calculates also autocorrelation function with 10 lags.

5.3 Tendency estimation: im1d tend

If the signal exhibits a tendency, it may be convenient to remove it before starting the analysis.

A well-known �tting method is the polynomial one. A polynomial of order p is �tted around

each pixel in a window of size T (p equals 2 in this program). In order to have smooth

tendency estimation, it is recommended to weight the pixels with weights from 1 to zero for

pixels in the middle to the border of the window.

USAGE: im1d tend option in data out tend out signal no tend

where options are:

� [-T WindowSize for tendency estimation]

Default is 100.

� [-f FirstPixels] Default is the input signal size. If this option is set, the tendency is

estimated only on the �rst FirstPixels pixels.

Examples:

� im1d tend sig.dat tend.dat sig out

Remove the tendency in the input data with all default options.

� im1d tend -T 200 sig.dat tend.dat sig out

Ditto, but increase the window size.

Figure 5 shows the results when applying the tend est program (with a window size equal to

400) to a time series containing a tendency and an AR(4).
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5.4 Multiresolution transform: mr1d trans

Program mr1d trans applies a one-dimensional multiresolution transform to a signal. The

ouput �le contains an image, in which each row is a band of the multiresolution transform.

Morlet, Mexican hat, and French hat wavelet transforms are non-dyadic (the resolution is

not decreased by a factor two between two scales), and 12 voices (�xed value) are calculated

(instead of one for the dyadic case) when the resolution is divided by two. Then the number of

rows in the output image will be equal to 12*number of scales. The Morlet wavelet is complex,

so the wavelet transform is complex too. Using this transform, the �rst 12*number of scales

lines represent the real part of the transform, and the 12*number of scales last lines the

imaginary part. Four transforms are non-redundant: the bi-orthogonal, the lifting scheme,

and the wavelet packet methods (transforms 16 and 17). In this case, the output is not an

image but a signal (i.e. 1D rather than 2D), which has the same size as the original one.

Position and length of a given band in the output signal can be found by reading the �le

created using the \-w" option. For the lifting scheme based method, the type of lifting can

be changed using the \-l" option, and for the (bi-) orthogonal and packet one, the �lter can

be changed by the \-f" option.

19 transforms are available, which are grouped into 5 classes

� Class 1: no decimation (transforms 1 to 7 and 11 to 14).

� Class 2: pyramidal transform (transforms 8 to 10).

� Class 3: orthogonal transform (15 and 16).

� Class 4: Wavelet packets (17 and 18).

� Class 5: Wavelet packets via the �a trous algorithm (19).

Depending on the class, the transform does not contain the same number of pixels, and the

data representation di�ers. By default, the number of scales is calculated from the length of

the signal.

USAGE: mr1d trans option signal in image out

where options are:

� [-t type of multiresolution transform]

1. Linear wavelet transform: �a trous algorithm

2. B1-spline wavelet transform: �a trous algorithm

3. B3-spline wavelet transform: �a trous algorithm

4. Derivative of a B3-spline: �a trous algorithm

5. Undecimated Haar wavelet transform: �a trous algorithm

6. Morphological median transform

7. Undecimated (bi-) orthogonal wavelet transform

8. Pyramidal linear wavelet transform

9. Pyramidal B3-spline wavelet transform

10. Pyramidal median transform
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11. Morlet's wavelet transform
Continuous wavelet transform with a complex wavelet which can be decomposed
into two parts, one for the real part, and the other for the imaginary part:

 r(x) =
1p
2��

e
� x2

2�2 cos(2��0
x

�
)

 i(x) =
1p
2��

e
� x2

2�2 sin(2��0
x

�
)

First scale �0 is chosen equal to 2�0 and �0 = 0:8, using 12 voices per octave.

12. Mexican hat wavelet transform
Continuous wavelet transform with the Mexican hat wavelet. This is the second
derivative of a Gaussian

 (x) = (1� x2

�2
)e
� x2

2�2 (23)

First scale �0 is chosen equal to 1p
3
, using 12 voices per octave.

13. French hat wavelet transform
Continuous wavelet transform with the French hat wavelet

 (x) =

8<
:

0 if j x
�
j> 1

�1 if j x
�
j2 [1

3
; 1]

2 if j x
�
j< 1

3

(24)

First scale �0 equal to 0:66, and 12 voices per octave.

14. Gaussian derivative wavelet transform
Continuous wavelet transform. The wavelet is the �rst derivative of a Gaussian

 (x) = �xe� 1

2
x2 (25)

First scale �0 equal to
1p
3
, and 12 voices per octave.

15. (bi-) orthogonal transform.

16. (bi-) orthogonal transform via lifting scheme.

17. Wavelet packets.

18. Wavelet packets via lifting scheme.

19. Wavelet packets using the �a trous algorithm.

� [-n number of scales]
Number of scales used in the multiresolution transform.

� [-r]
Rebin all scales to the input signal size (for pyramidal transforms only).

� [-k]
Set to 0 pixels contaminated by the border problem.

� [-T type of �lters]

1. Antonini 7/9 �lters.

2. Daubechies �lter 4.

3. Biorthogonal 2/6 Haar �lters.

4. Biorthogonal 2/10 Haar �lters.
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5. Odegard 7/9 �lters.

6. User's �lters.

Default is Antonini 7/9 �lters.
This option is only available if the chosen transform method is the (bi-) orthogonal
transform (-t option in [7,15,17]).
For option 6, the format used is that of the Bath Wavelet Warehouse: see Example
below.

� [-L]
Use an L2 normalization. Default is L1.

� [-L]
Use an L2 normalization. Default is L1.

� [-l type of lifting transform]

1. Lifting scheme: CDF WT.

2. Lifting scheme: median prediction.

3. Lifting scheme: integer Haar WT.

4. Lifting scheme: integer CDF WT.

5. Lifting scheme: integer (4,2) interpolating transform.

6. Lifting scheme: Antonini 7/9 �lters.

7. Lifting scheme: integer Antonini 7/9 �lters.

Default is Lifting scheme: integer Haar WT.
This option is only available if the chosen transform method is the li�ng scheme (-t 24).

� [-w InfoFileName]
Write in a �le the size and the starting index of each band. This �le contains a 2D 
oat
array (Array[2, NbrBand+3]).

info[0,0] = transform number
info[1,0] = number of scales
info[0,1] = transform class number (5 classes)
info[1,1] = number of bands

it is not equal to the number of scales
for wavelet packets transform.

info[0,2] = number of pixels
info[1,2] = lifting scheme type
info[0,3] = type of filter
info[1,3] = type of normalization
for i=4 to Number_of_bands + 3
info[0,i] = number of pixels in the band i
info[1,i] = position number of the pixel of the band

If a user �lter �le is given (i.e. -T 6,�lename), with a �lename of L characters, L lines
are added to the array:

info[1,Number_of_bands + 4] = number of characters of the filter file name
for i=Number_of_bands+4 to Number_of_bands+4+L-1

info[0,i] = ascii number of the ith character.
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Examples:

� mr1d trans exch.dat tr out
Transform input is in �le exch.dat, and output is in �le tr out.dat. For the latter, the
number of rows equals the lenght of the time series in exch.dat. The number of columns
equals the number of resolution scales.

� mr1d trans -n 7 -t 3 sig.dat outsig.dat
�A trous algorithm with 7 scales.

� mr1d trans -n 7 -T 5 -t 15 sig.dat outsig.dat
Bi-orthogonal wavelet transform (Odegard 7/9 �lters).

� mr1d trans -n 7 -T 5 -t 15 -w info.dat sig.dat outsig.dat
Ditto, but an information �le is written. This information is necessary for reconstruction.

� mr1d trans -n 7 -T 5 -t 15 -w info.dat sig.dat outsig.dat
Ditto, but an information �le is written. This information is necessary for reconstruction.

� mr1d trans -n 7 -T 6,dau4 -t 15 -w info.dat sig.dat outsig.dat
Ditto, but the �lters de�ned in the �le \dau4.wvf" are used instead of the Odegard
�lters. The format is that of the Bath Wavelet Warehouse,
http://dmsun4.bath.ac.uk/wavelets/warehouse.html

5.5 Wavelets and autocorrelation function: mr1d acor

Program mr1d acor calculates the autocorrelation at each scale of the wavelet transform.

USAGE: mr1d acor option signal in autocor out

where options are:

� [-n number of scales]
Number of scales used in the multiresolution transform.

� [-S Nbr of Lags]
Default is 10.

5.6 Filtering: mr1d �lter

Program mr1d �lter �lters a signal using di�erent methods.

USAGE: mr1d �lter option signal in signal out

where options are:

� [-t type of multiresolution transform]

1. Linear wavelet transform: �a trous algorithm

2. B1-spline wavelet transform: �a trous algorithm

3. B3-spline wavelet transform: �a trous algorithm

4. Derivative of a B3-spline: �a trous algorithm

5. Undecimated Haar wavelet transform: �a trous algorithm

6. morphological median transform

7. Undecimated (bi-) orthogonal wavelet transform

8. pyramidal linear wavelet transform

9. pyramidal B3-spline wavelet transform
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10. pyramidal median transform

Default is 3.

� [-T type of �lters]

1. Antonini 7/9 �lters.

2. Daubechies �lter 4.

3. Biorthogonal 2/6 Haar �lters.

4. Biorthogonal 2/10 Haar �lters.

5. Odegard 7/9 �lters.

6. User's �lters.

Default is Antonini 7/9 �lters.
This option is only available if the chosen transform method is the (bi-) orthogonal
transform (-t 7).
For option 6, see description under mr1d trans.

� [-m type of noise]

1. Gaussian Noise

2. Poisson Noise

3. Poisson Noise + Gaussian Noise

4. Multiplicative Noise

5. Non-stationary additive noise

6. Non-stationary multiplicative noise

7. Unde�ned stationary noise

8. Unde�ned noise

9. Stationary correlated noise

10. Poisson noise with few events

Default is Gaussian noise.

� [-g sigma]

� [-c gain,sigma,mean]

� [-E Epsilon]
Epsilon = precision for computing thresholds (only used in case of poisson noise with
few events). Default is 1e� 03.

� [-n number of scales]

� [-s NSigma]

� [-i number of iterations]

� [-e epsilon]
Convergence parameter. Default is 1e� 4.

� [-K]
Suppress the last scale. Default is no.

� [-k]
Suppress isolated pixels in the support. Default is no.

� [-v]
Verbose. Default is no.
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Examples:

� mr1d �lter sig.dat �lter sig.dat
Filtering using the �a trous algorithm, and a Gaussian noise model.

� mr1d �lter -m 2 sig.dat �lter sig.dat
Ditto, but assuming Poisson noise.

5.7 Multiscale entropy �ltering: mw1d �lter

The program mw1d �lter �lters a one-dimensional signal using the multiscale entropy method
(N2-MSE approach).

USAGE: mw1d �lter options signal in signal out

where options are :

� [-t type of multiresolution transform]

� [-m type of noise]

� [-g sigma]

� [-c gain,sigma,mean]

� [-s NSigma]

� [-n number of scales]

� [-e epsilon]
Convergence parameter. Default is 1e�4.

� [-i number of iterations]
Maximum number of iterations. Default is 10.

� [-G RegulParam]
Regularization parameter. Default is 1.

� [-D]
The regularization parameter is a function of the SNR in the data. Default is no.

� [-w FilterCoefFileName]
Write to disk the �ltered wavelet coeÆcient.

� [-v]
Verbose. Default is no.

Examples:

� mw1d �lter sig in.dat sig out.dat
�lters a signal by the multiscale entropy method, assuming Gaussian noise (its standard
deviation is automatically estimated).

� mw1d �lter -G 2 sig in.dat sig out.dat
Same as before, but the regularization will be stronger, and the solution more smooth.

� mw1d �lter -G 2 -D sig in.dat sig out.dat
The regularization is adaptive, depending on the wavelet SNR.

� mw �lter -G 2 -D -s 5 sig in.dat sig out.dat
Same as before, preserving feature in the wavelet space greater than 5� instead of the
default 3� value.
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5.8 Transition detection: mr1d nowcast

Program mr1d nowcast detects the transitions in all scales at a given position. The wavelet
transform used is the Haar transform, so a given wavelet coeÆcient at position x and at scale
j (j = 1::P , P being the number of scales) is calculated from pixel values between positions

x � 2j + 1 and x. Only pixels in the signal which are on the left of a given position x (or
before a given time for temporal signal) are used for the calculation of the wavelet coeÆcients
at position x. This allows us to detect a new event in a temporal series irrespective of the
time scale of the event. By default, the analysed position is the last one of the signal, but
other positions can equally well be analyzed using the \-x" option. The program prints for
each scale j the following information corresponding to the position x:

� No detection
if the wavelet coeÆcient j wj(x) j< k�j

� New upward detection
if wj(x) > k�j and j wj(x� 1) j< k�j

� New downward detection
if wj(x) < �k�j and j wj(x� 1) j< k�j

� Positive signi�cant structure
if wj(x) > k�j and j wj(x� 1) j> k�j
The �rst detected coeÆcient of the structure is also given.

� Negative signi�cant structure
if wj(x) < �k�j and j wj(x� 1) j> k�j
The �rst detected coeÆcient of the structure is also given.

� End of signi�cant structure
if j wj(x) j< k�j and j wj(x� 1) j> k�j

Furthermore the signal to noise ratio of the wavelet coeÆcient is given.

USAGE: mr1d nowcast option signal in

where options are:

� [-m type of noise]

1. Gaussian Noise

2. Poisson Noise

3. Poisson Noise + Gaussian Noise

4. Multiplicative Noise

5. Non-stationary additive noise

6. Non-stationary multiplicative noise

7. Unde�ned stationary noise

8. Unde�ned noise

Description in section 4. Default is Gaussian noise.

� [-g sigma]

� [-c gain,sigma,mean]

� [-n number of scales]

� [-s NSigma]

� [-x Position]
Position to analyse. Default is the last point.
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Examples:

� mr1d nowcast sig.dat
Analyse the last point of the signal with all default option.

� mr1d nowcast -x 55 -s 10 sig.dat
Analyse the point at position 55, and detect the transition with a signal to noise ratio
equal to 10.

5.9 Prediction: mr1d fcast

Program mr1d fcast performs a forecasting by four di�erent methods: the standard AR model
(AR), an AR method per scale (and the prediction is the coaddition of the predicted wavelet
coeÆcients), the multiresolution AR model (MAR), and a neural network. The program can
be used in two modes: the evaluation and the prediction mode. In the evaluation mode, the
�rst part of the time series is used to predict the second part, and the output �le contains the
same number of values as the input �le. The initial values (corresponding to the initial part
of the signal) are identical, and the other values are the predicted ones. The error prediction
is calculated and printed on the standard output device (screen window). In the prediction
mode, the output �le contains more values than the input �le. The last values correspond
to the predicted values. For the AR and MAR models, the order of the model can either be
�xed by the user (\-a option"), or automatically calculated. In case of an automatic MAR
model order estimation, the order can be di�erent at each scale.

By default, the signal is assumed to be stationary. If the \-h" option is set, we assume
a non-stationary signal. In that case, the last scale of the wavelet transform is analyzed
di�erently (i.e. not with the AR model). Several methods can be selected by the \-B" option.
The default is the polynomial extrapolation of order 2.

If the \-L" option is set, only the last pixels will be used in the analysis.

USAGE: mr1d fcast option signal in signal out

where options are:

� [-P predict method]

1. Autoregressive model.

2. Autoregressive model per scale.

3. Multiresolution Autoregressive model.

4. Neural network.

Default is Multiresolution Autoregressive Model.

� [-n number of scales]
Number of scales to be used in the Multiresolution AR model. Default is 5.

� [-a AR Order]
AR oder used for the prediction. Default is automatically estimated.

� [-O Estimation AR Order Method]

1. AIC

2. AICC

3. BIC

Default is BIC method.

� [-p Number of Predict]
Number of prediction. Default is 0.
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� [-m MinAROrder]
Minimum AR model order. Default is 1.

� [-M MaxAROrder]
Maximum AR model order. Default is 10.

� [-L NPix]]
Analyse the last NPix pixels. Default is all pixels.

� [-h]
Non stationary signal. Default is stationary.

� [-B extrapol type]

1. Constant border (cJ(N + i) = cJ (N), where cJ is the last scale, N the number of pixels).

2. Mirror border (cJ(N + i) = cJ(N � i)).

3. Double mirror border (cJ (N + i) = 2cJ(N)� cJ(N � i)).

4. Polynomial extrapolation (deg 1).

5. Polynomial extrapolation (deg 2).

Default is 5. Only used if the \-h" option is set.

� [-T Poly Nbr Pix]
Number of pixels used for the polynomial extrapolation. Default is 5. Only used if the
\-h" option is set and if a polynomial extrapolation is used.

� [-w InfoFileName]
Write to disk some infomation about the prediction error and the AR model order. The
�le contains a 1D table of size N +2, where N is the number of scales (N = 1 when the
MAR model is not used).

T[0] = prediction error
T[1] = Number_of_scale
for j = 0 to Number_of_scale-1 do T[j] = AR order at scale j

Examples:

� mr1d fcast sig.dat eval.dat
Evaluate the prediction by MAR method.

� mr1d fcast -p 1 sig.dat pred.dat
Make a prediction at position N+1.

Hints on forecasting

Using input �le sp.csv, assess the overall quality as given by the standard deviation prediction
error.

mr1d fcast -P2 -v sp.csv spout gives an error (rounded) of 8.26.
mr1d fcast -P3 -v sp.csv spout gives an error of 7.71.
mr1d fcast -P1 -v sp.csv spout gives an error of 7.75.
Using the MAR model (-P3, default option) gives predicted values as follows.
mr1d fcast -P3 -p3 sp.csv spout
Prediction =
+1 ==> 1214.73
+2 ==> 1216.89
+3 ==> 1217.54
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Figure 3: top, noisy blocks and �ltered blocks overplotted. Bottom, �ltered blocks.

Figure 4: Top, real spectrum and �ltered spectrum overplotted. Bottom, �ltered spectrum.
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Figure 5: Top, input signal containing an AR(4) signal and a tendency. Middle, estimated

tendency. Bottom, di�erence between the two previous signals.
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